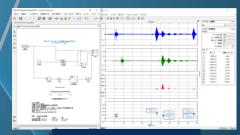

超音波干渉法による弾性波速度計測システム


本装置は、「超音波による弾性波速度測定技術により、温度、圧力、温度・圧力条件下で試料の伝搬時間を測定し、弾性波(縦波・横波速度)および材料力学定数の温度、圧力特性を求めることができます。

ハンドプレス加圧装置

加圧システム制御ソフト (自社開発)

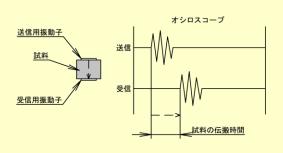
信号処理解析ソフト

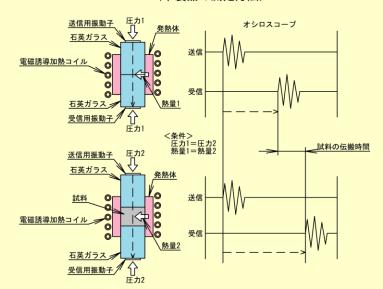
詳しいご説明、お客様のご要望・ご相談など、お気軽に下記までご連絡ください

問い合わせ先

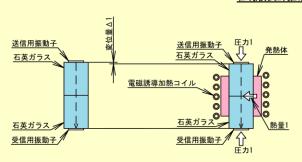
株式会社ケイ・オー

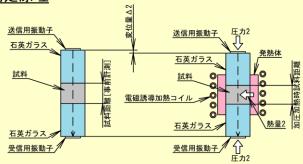
名古屋市東区泉1丁目22番29号 ストーク久屋ビル7階


TEL:052-971-5221 FAX:052-971-5227 Email:ko-net@k-o.co.jp 担当部署:技術開発部(6階) Email:ko-tdd@k-o.co.jp



伝搬時間測定原理(透過法)


(本製品の測定方法)


(一般的な測定方法)

伝搬距離測定原理

加圧加熱時試料距離=試料距離[事前計測] - (変位量 $\Delta 2$ - 変位量 $\Delta 1$) < 条件 > E 九1=圧力2 熱量1=熱量2

■装置の主な構成

内容
【超音波干渉法弾性波測定送信システム】 ①ファンクションジェネレーター ②高速バイボーラ電源
【超音波干渉法弾性波測定受信システム】 ① 超低雑音増幅器 ② 低雑音直流電源 ③ オシロスコープ ④ ハイインピーダンスブローブ ⑤ 開発ルールキット(MATLAB)
【高周波誘導加熱温度制御ユニット】
【加熱・加圧システム部】 超音波干渉法ロッドユニット、高周波誘導加熱炉、サーボ加圧プレス他

本装置は、平成26年度補正『ものづくり・商業・サービス革新補助金』により製作しました。 事業計画名

『超音波干渉法による弾性波速度計測システムの試作開発』

■主な仕様

項目	内容
周波数(圧電素子共振周波数) Fo(MH z)、インピーダンス整合	数百kH z ~20MH z (常用周波数共振周波数範囲) (印加周波数50MHzMαx対応可能)、Z:50Ω
入出力信号電力増幅度範囲	10~50dB
周波数測定誤差(Δf) (伝搬時間測定誤差)	*/-数百Hz (*/-10 ⁻³ sec)
測定方式	透過型方式、反射型方式 オーバーラップ方式他に対応可能
信号処理解析・表示解析	FFT信号処理、MATLABデータ解析搭載
荷重、加熱方式	加圧:サーボモーター搭載サーボプレス機 加熱:高周波誘導加熱試作回路
測定条件と測定値	下記する材料(低融点合金材料、例Mg合金 (AZ31)) 他の固体及び固体から半溶融(Softening Point)の伝搬時間At、減衰率Qが測定できる ①温度 (1)室温から600°cまでの範囲:固体から半溶融 ②荷重 (P) 100Mpaまでの範囲:固体 ③ (P、T) in-situ (Max500°C、Max100MPa):固体から半溶融
電源	・単相AC100V × 2